Mark scheme – Enthalpy and Entropy

Q	uestio n	Answer/Indicative content	Marks	Guidance
		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 25.55 <u>kJ mol⁻¹</u> OR 25550 <u>J mol⁻¹</u> award first 4 marks	5 (AO 2.2×4)	
1		$\Delta S = 238 - (198 + 2 \times 131) \checkmark$ = -222 (J K ⁻¹ mol ⁻¹) OR -0.222 (kJ K ⁻¹ mol ⁻¹) $\Delta G = \Delta H - T\Delta S$ OR $\Delta G = -91 - (525 \times -0.222)$ OR $\Delta G = -91000 - (525 \times -222) \checkmark$ = 25.55 kJ mol ⁻¹ OR 25550 J mol ⁻¹ (Reaction is) not feasible AND \triangle G > 0	(AO 3.2×1)	ALLOW ECF IGNORE units at this stage Units for ΔG required ALLOW 26 kJ mol ⁻¹ OR 26000 J mol ⁻¹ up to calculator value.
		Total	5	
2		FIRST CHECK THE ANSWER IN ON ANSWER LINE If answer = (+)156 (J K ⁻¹ mol ⁻¹) award 4 marks	4 AO2.4× 4	Using 298 K, $\Delta S = \frac{-55.8 - (-16.1)}{298} = \frac{-39.7}{298}$ = -0.133(kJ K ⁻¹ mol ⁻¹) OR -133 (J K ⁻¹ mol ⁻¹) Sign required IGNORE units Calculator: -0.133221 (kJ K ⁻¹ mol ⁻¹) -133.221 (J K ⁻¹ mol ⁻¹) ALLOW ECF from incorrect temperature. Using -133: S(Na ₂ S ₂ O ₃) = 372.4 - 349.5 - (-133) = 22.9 + 133 = (+)156 (J K ⁻¹ mol ⁻¹) 3 SF required

ALLOW ECF from incorrect $\Delta_r S$ (Part 1)

Examiner's Comments

This was a testing question. This question discriminated very well but lower ability candidates struggled to score marks.

This unfamiliar scenario required candidates to first decide on a strategy for solving the problem. Candidates needed to use the Gibbs' equation and supplied data to determine the entropy change. They then needed to combine this value with other supplied data to determine the unknown standard entropy. The data provided were all standard, signified by the standard sign.

Candidates were expected to use 298 K as the standard temperature to first determine the entropy change. Although many candidates chose 298 K, many different temperatures were seen, with 273 K and 286.5 K (the temperature change in 5a(i)) being common. Some candidates were obviously thrown by the absence of a stated temperature and many omitted T from their Gibbs' equation, using $\Delta G = \Delta H - \Delta S$ instead.

This calculated value for ΔS (correct: -0.133 kJ) then needed to be combined with the supplied entropy data to determine the unknown standard entropy (correct: 156 J) to three significant figures. ECF could be applied during marking but this second calculation first required a unit conversion from kJ to J. Many candidates did not make this conversion. Some candidates made errors combining this information, e.g. incorrect signs, adding rather than subtracting and no unit conversions. Finally, some candidates, successful in their calculation, did not follow the instruction to quote their answer to three significant figures.

Exemplar 5 shows a very clear response. The candidate has used the Gibbs' equation to determine Δ S first in kJ and then, in preparation for the second part of the determination, in J. The Δ S value is combined with the supplied entropy data to obtain the unknown entropy change, shown by 'x' in the response. This calculated value is then rounded to the required three significant figures.

Exemplar 5

				$\Delta G = \Delta H - T\Delta S$ $-16.1 = -55.8 - 298\Delta S$ $298\Delta S = -39.7$ $\Delta S = -0.13322.14765 \text{ k} 3 \text{ K}^{-1} \text{ w} 1^{-7}$ $= -133.2214765 \text{ J} \text{ K}^{-1} \text{ w} 1^{-7}$ $372.4 - (5 \times 69.9) - \infty = -133.2214765$ $\infty = 156.1214765$ $= 156$ $s^{*} =$
		Total	4	
3	i	Equation Ba(NO ₃) ₂ (aq) + Na ₂ SO ₄ (aq) → BaSO ₄ (s) + 2NaNO ₃ (aq) √ Entropy change and explanation entropy decreases OR entropy change negative AND (BaSO ₄) solid / ppt has less disorder / more order / fewer ways of arranging energy / less freedom / less random particles / dispersal of energy √	2	ALLOW multiples M2 is dependent on BaSO ₄ (s) (even if formula is incorrect – eg Ba(SO ₄) ₂ (s)) seen as a product in the attempted equation as long as reactants are not solid. BaSO ₄ solid / ppt may be assumed from BaSO ₄ (s) seen in the attempted equation. Examiner's Comments Candidates who correctly identified barium sulfate as a solid product tended to realise that entropy had decreased, although a significant number failed to state that this decrease in entropy was as a result of less disorder being created.
	ii	Equation $\frac{1}{2}(s) \rightarrow l(g) \checkmark$ state symbols required Entropy change and explanation entropy increases OR entropy change positive AND gas has more disorder / less order / more ways of arranging energy / more freedom / more random particles / more dispersal of energy \checkmark	2	DO NOT ALLOW $I_2(s) \rightarrow 2I(g)$ DEPENDENT on $\frac{1}{2}I_2(s) \rightarrow I(g)$ OR $I_2(s)$ $\rightarrow 2I(g)$ Examiner's Comments Most candidates failed to produce a correct equation for the standard enthalpy change of atomisation of iodine. Of those who were able to produce the correct equation, a significant number failed to state that the increase in entropy was as a result of increased disorder being created.
		Total	4	

4	а		$\Delta G = \Delta H - T\Delta S$ linked to $y = mx + c$ (somewhere) \checkmark gradient = $-\Delta S \checkmark$ P: $\Delta H / \text{enthalpy change } \checkmark$ (temperature) for reaction to be feasible/unfeasible Q: OR (temperature) at which feasibility changes \checkmark	4	Could be: $\Delta G = -\Delta ST + \Delta H$ - sign required ALLOW $\Delta S = -gradient$ ALLOW 'point of feasibility' For Feasibility: ALLOW can take place/happen OR is spontaneous IGNORE 'minimum/maximum temperature' Examiner's Comments For the minority of candidates who recognised that the Gibbs' equation could be expressed in y = mx + c format, this question was very straightforward. For others, the realisation that Q was the point at which feasibility changed was the only mark scored.
	b	i	(Species have) different states / phases √	1	Examiner's Comments All but a few candidates realised that the term heterogeneous equilibrium could be applied because carbon monoxide was in a different physical state to the other reactants and products.
		ïi	(<i>K</i> _p =) <i>p</i> (CO(g)) ⁴ √	1	Allow species without state symbols and without brackets, e.g. Pco^4 , $ppCO^4$, PCO^4 , $p(CO^4)$ etc. DO NOT ALLOW square brackets Examiner's Comments Marks were awarded for less than perfect versions of $K_p = p(CO(g))^4$. As long as a 'p' or a 'P' was seen and curved, rather than square, brackets, along with the correct power, the mark was awarded. This was to differentiate between the candidates who knew that only the partial pressures of gaseous species should feature in a K_p expression from the candidates who used all four species to write the expression.
		iii	$\Delta G \text{ at } 25 C$ $\Delta G = \Delta H - T\Delta S = 676.4 - (298 \times 0.7031)$ = (+) 467 (kJ mol ⁻¹) OR (+) 466876 (J mol ⁻¹) \checkmark	3	IGNORE units ALLOW (+) 467 up to calculator value of

	Non-feasibility statement		466.8762 correctly	rounded	
	Non-feasible when $\Delta G > 0$ OR $\Delta G > 0$ OR $\Delta H > T\Delta S \checkmark$		ECF for any positiv	ve value determined	ł
	Minimum temperature minimum temperature = $\frac{\Delta H}{\Delta S} = \frac{676.4}{0.7031}$ = 962(.0) K \checkmark		ALLOW 962 up to 962.0253165 correct Examiner's Comm Candidates coped apart from a signifi errors, could provid therefore could sho feasible.	calculator value of ectly rounded ments well with the calcul cant number of rou de a positive value ow the reaction to n	ation and, nding of ΔG and iot be
			Candidates were a minimum temperat to be feasible was sensibly rounded to A significant numb give 963 K as the f a correct value to s their working.	Ilso able to calculate ture required for the 962.023165 K whice o 962 K. er of candidates ch final answer despite several decimal place	e that the reaction th was ose to showing ces in
	FIRST, CHECK THE ANSWER ON ANSWER LINE		For answer, ALLOW -111 (kJ NOTE: IF any valu AWARD any mark	mol^{−1}) les are omitted, DO s. e.g. - 393.5 OR -	NOT -13.5 may
i V	Correct expression $-13.5 = (4 \times -393.5) - (-1118.5 + 4$ $\times \Delta_t H(CO)) \checkmark$ Correct subtraction using ΔH and $\Delta_t H(Fe_3O_4)$ $4 \times \Delta_t H(CO) = (4 \times -393.5) - (-1118.5)$	3	Common errors		
	+ 13.5 = -442(.0) (kJ mol ⁻¹) √ Calculation of Δ _f H(CO) formation $\Delta_{f}H(CO) = -\frac{442}{4} = -110.5$ (kJ mol ⁻¹) √		(+)110.5 (+)184.625 / 184.63 / 184.6 / 185	wrong / omitted sign No 4CO2	2 marks 2 marks
			(+)738.5 / 739 -117.25 / -117.3 / -117	No 4CO ₂ and no CO/4 Wrong cycle	1 mark 2 marks
			-469	Wrong cycle, no CO/4	1 mark

					(+)177.875 / 177.88 / 177.9 / 178	Wrong cycle, no 4CO2	1 mark
					-360.5	Used 118.5	2 marks
					Any other number marking point for e with ONE error on e.g.395.3 for 393.3	: CHECK for ECF f expressions using / lly e.g. one transcri 5	from 1st ALL values ption error:,
					Examiner's Com The general methor was known to mos examples of avoid example, transcrip values (-393 for - -1118.5). Candida show every step in allow method man absence of a corre	ments od of determining Δ st candidates, but n lable errors were se otion errors in recor -393.5 and -118.5 f ates should be advi n their calculation. ks to be applied in ect final answer.	Δ _f H(CO) nany een. For rding Δ _f H for ised to This would the
			Total	12			
5	а	i	$2H_2S(g) + O_2(g) \longrightarrow 2S(s) + 2H_2O(g) \checkmark$	1	ALLOW multiples e.g. 6H ₂ S(g) + 3O	, ₂(g) → 6S(s) + 6H₂	₂O(g)
		ï	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 3.05 × 10 ⁷ (g) award 3 marks	3			
			= $1.50 \times 10^8 \times 16(0)/100 = 2.4(0) \times 10^7 \text{ dm}^3 \text{ of } \text{H}_2\text{S} \checkmark$ n (H ₂ S) (= n(S)) 2.4(0) × 10 ⁷ /24.0 mol = 1(.00) × 10 ⁶ mol √				
			Mass S = 1(.00) × 10 ⁶ × 95(.0)/100 × 32.1 = 3.05×10^7 (g) \checkmark		ALLOW ECF from	n incorrect volume o	of H ₂ S
			FIRST, CHECK FOR A VALUE OF ΔG . IF answer = - 89.96(34) (kJ mol ⁻¹) award 3 marks				
	b	i	ΔS calculation (2 marks) ΔS = $(3 \times 31.8) + (2 \times 188.7) - [(2 \times 205.7) + (248.1)]$ OR ΔS = 472.8 - 659.5 √	5			
			ΔS = −186.7 J mol ⁻¹ K ⁻¹ OR −0.1867 kJ mol ⁻¹ K ⁻¹ \checkmark				

		Δ <i>G</i> calculation (1 mark) Δ <i>G</i> = Δ <i>H</i> − <i>T</i> Δ <i>S</i> = −145.6 − (298 × −0.1867) = − 89.96(34) (kJ mol ⁻¹) √ Comment (1 mark) − sign shows the (forward) reaction is feasible √ Temperature at which feasibility changes (1 mark) $T = \frac{\Delta H}{\Delta S} = \frac{-145.6}{-0.1867} = 780 \text{ k}$ AND comment that Δ <i>G</i> OR Δ <i>H</i> − <i>T</i> Δ <i>S</i> = 0 √		ALLOW (-) 187 OR 0.187 ALLOW ECF from incorrect Δ <i>H</i> ALLOW -90 up to calculator value of -89.9634 correctly rounded ORA for comment about - sign required for feasibility
	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -296.8 (kJ mol ⁻¹) award 2 marks	2	ALLOW ECF ALLOW 1 mark for (+)296.8 Subtraction the wrong way around
		Total	11	
6 a		(enthalpy change for) 1 mole of gaseous ions OR 1 mole of hydrated ions / aqueous ions ✓ gaseous ions forming aqueous / hydrated ions ✓	2	 one mole can be stated just once EITHER with gaseous ions OR with aqueous ions, e.g. 1 mole of gaseous ions forms hydrated ions / aqueous ions Gaseous ions form 1 mole of hydrated ions / aqueous ions ALLOW 1 mol for 1 mole IGNORE 'energy released' OR 'energy required' For 2nd mark IGNORE gaseous ions are hydrated IGNORE gaseous ions dissolve in water <i>Particles formed not stated</i> ALLOW 1 mark for: 1 mole of gaseous IONS forms aqueous / hydrated atoms / particles / molecules Examiner's Comments This question assessed enthalpy changes in

		^{2K'(g) + SO₄²(g) ^{(2×) C} ^{(2×) C} ^{(2×) C} ^{(2×) C} ^{(2×) C} ^{(2×) C} ^{(2×) C} ^{(2×) C} ^{(2×) C} ^{(2×) C} ⁽²⁾}		 No mark for labels as C and D are combined Therefore 3 max for species on energy levels provided Examiner's Comments This question assessed enthalpy changes in aqueous solutions. Many candidates successfully completed the energy cycle to obtain all marks. Correct species and state symbols are essential in such cycles and marks could not be awarded for species such as K⁻(g) or SO₄⁻(g). Poorly-prepared candidates often scored no marks at all, having shown random species on the energy levels. Candidates are advised to ensure that the state symbols (s) and (g) are clearly distinguished.
	ïi	Δ <i>H</i> (hydration) SO₄ ^{2−} = −1099 (kJ mol ^{−1}) √	1	 ONLY correct answer Examiner's Comments This question assessed enthalpy changes in aqueous solutions. Although many candidates correctly calculated the lattice enthalpy, errors were common. A common error was use of −320 (instead of 2 × −320) giving −1419. Answer = −1099 kJ mol⁻¹
c	i	Aqueous particles are more disordered than solid (particles) OR Solid particles are more ordered than aqueous (particles) ✓	1	For particles, ALLOW ions DO NOT ALLOW molecules / atoms ALLOW 'When the state changes from solid to aqueous, disorder increases' For more disordered, ALLOW less ordered / more freedom / more ways of arranging energy / more random For aqueous particles, ALLOW particles in solution IGNORE dissolved Examiner's Comments This question assessed enthalpy changes in aqueous solutions.

				In this part, candidates needed to recognise that solid particles are forming aqueous particles with an increase in disorder. Many candidates incorrectly used 'liquid' instead of aqueous and others started from gaseous particles, perhaps confusing enthalpy change of solution with hydration.
				Contact TL if solely entropy approach rather than ΔG
		Calculation (2 marks) $\Delta G = 24 - (298 \times 0.225)$ OR 24 - 67.05 (in kJ) OR 24000 (208 × 225) OR 24000 (57050 (in kJ))		ALLOW -43.1 OR -43.05 (calculator value) ALLOW 1 calculation mark (IGNORE units) for
		Calculation of ΔG (IGNORE UNITS) $\Delta G = -43$ (kJ mol ⁻¹) OR -43000 (J mol ⁻¹) \checkmark Subsumes 1st calculation mark		-67.(026) OR -67026 ECF from 225 instead of 0.225 18.(375) OR +18.375 ECF from 25 instead of 298
	ï		3	ALLOW other ECF from ONE error in 1st step of calc, e.g. incorrect value for ΔH such as -1099 from 3bii \rightarrow -1166.05 TAKE CARE that same units used for ΔH and ΔS
		Reason for solubility Calculated value of ΔG that is negative		NO reason mark from a +ve value of ΔG Examiner's Comments
		AND		This question assessed enthalpy changes in aqueous solutions.
		Statement that: ΔG is negative OR $\Delta G < 0$ OR $-43 < 0$ OR $\Delta H - T\Delta S < 0$ OR $T\Delta S > \Delta H \checkmark$		The majority of candidates recognised that the Gibbs' equation was required. Usually the correct enthalpy change of +24 kJ mol ⁻¹ was used to obtain a negative value for ΔG . The majority then went on to link the negative value to feasibility for the dissolving process. A significant number of candidates used the wrong enthalpy change (or no enthalpy change at all) or mixed units of J and kJ. Answer: $\Delta G = -43$ kJ mol ⁻¹
		Total	12	
7	i	5 mol / molecules (of gas) forms 3 mol / molecules (of gas) ✔	1	ALLOW reaction forms fewer moles / molecules IF stated, numbers of molecules MUST be correct IGNORE comments related to ΔG OR disorder (even if wrong)

				Examiner's Comments
				This part was usually answered correctly in terms of fewer moles or molecules of gaseous products, with most candidates linking also to decreasing disorder. A significant number just mentioned decreasing disorder without including the reason for the decrease.
	ïi	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer =(+)131 (J K ⁻¹ mol ⁻¹), award 2 marks 164 = $(186 + 2 \times 206) - (4 \times S + 238)$ OR $4 S = 164 + (186 + 2 \times 206) - 238 \checkmark$		NOTE: IF any values are omitted, DO NOT AWARD any marks. e.g. –164 may be missing ALLOW FOR 1 mark
				-131wrong final sign49wrong sign for 16479.5no use of 2524no division by 438wrong sign for 186-75wrong sign for 206250wrong sign for 238
	ii	S = (+)131 (J K ⁻¹ mol ⁻¹) ✓	2	Any other number: CHECK for ECF from 1st marking point for expressions using ALL values with ONE error only e.g. one transcription error:, e.g.146 for 164 Examiner's Comments
				Although this part required candidates to calculate a standard entropy, rather than the more common entropy change assessed in previous exam papers, most candidates dealt with the problem with ease. Examiners rewarded partial success, usually where there was one incorrect sign or omitting to divide by 4.
		NOTE: DO NOT ALLOW answer to (ii) for AG		
		calculation		
	iii	ΔG calculation: 2 marks		ALLOW ΔG correctly calculated from 3 SF up to calculator value of -185.128

		∆G = -234 - 298 × -0.164 ✓		ALLOW working in J, <i>i</i> e: Δ <i>G</i> = −234000 − 298 × −164 √
		= −185 (kJ mol ⁻¹) ✓		= −185000 (J mol ⁻¹) ✓
	ш	IGNORE units (even if wrong) -185 subsumes 1st mark)	2	ALLOW 1 mark for use of 25 OR mixture of kJ and J, e.g. $\Delta G = -234 - 25 \times -0.164 = -229.9$ $\Delta G = -234 - 298 \times -164 = +48638$
				ALLOW ECF if calculated value for ΔG is +ve Then 'correct' response for 3rd mark would be not feasible / not spontaneous AND $\Delta G > 0$ / $\Delta H - T\Delta S > 0$
				Examiner's Comments
	iii	Feasibility comment for negative ΔG answer: 1 mark (Forward) reaction is feasible / spontaneous AND $\Delta G < 0 / \Delta H - T\Delta S < 0 \checkmark$	1	The majority of candidates used the Gibbs equation to obtain the correct value of ΔG . Many weak candidates used -164, rather than -0.164, in the expression, resulting in a positive value for ΔG . A few used 25 °C instead of 298 K. Candidates are far more adept with this calculation that used to be the case.
				The comment on feasibility was marked dependent on the sign obtained for ΔG .
				Answer: $\Delta G = -185 \text{ kJ mol}^{-1}$
				ALLOW (When $\Delta G = 0$) $T = \frac{-234}{-0.164} = 1427 \text{ K OR } \frac{-234000}{-164} = 1427 \text{ K}$
		$(\Delta G =) -234 - 1427 \times \frac{-164}{1000} = 0$ (calculator 0.028(kJ) OR 28 (J)		For 2nd mark, IF ΔG is +ve from (iii) ALLOW ECF for: Above 1427 K, reaction is feasible / spontaneous OR 1427 K is minimum temperature that reaction happens
	I V	2 nd mark only available if 1 st mark has been awarded	2	IGNORE LESS feasible
		(Above 1427K / 1154°C), reaction is not feasible / not spontaneous ✓ OR 1427 K is maximum temperature that reaction		IGNORE comparisons of the signs of $T\Delta S$ and ΔH , e.g IGNORE $T\Delta S$ is more negative than ΔH
		happens		Examiner's Comments
				Although answered well, this part discriminated well. Two strategies were see. The first and more common repeated the ΔG calculation from (iii) to show that ΔG was just positive (0.028 kJ mol ⁻¹) and hence that the reaction was now not feasible. The second strategy showed that

					1427K and therefore 1154°C is the temperature at which ΔG has a value of 0 kJ mol ⁻¹ . Although most candidates were successful here, many weaker candidates seemed unaware of what to do. It was then common to see random numbers being used and °C, instead of K, in the ΔG expression (much more common than in (iii). The best candidates also identified that the reaction becomes unfeasible above 1147°C. The explanation was marked consequentially of the sign obtained in (iii).
			Total	8	
8	а	i	(entropy) decreases AND (solid / ice has) less disorder / more order / fewer ways of arranging energy / less freedom / less random molecules ✓	1	ORA decreases and reason required for mark ASSUME change is for freezing of water unless otherwise stated DO NOT ALLOW atoms are more ordered Examiner's Comments This part was usually answered, the best responses linking the state change from liquid to solid with increased order and a decrease in entropy.
		ïi	(entropy) increases AND (CO ₂) gas is formed √ Could be from equation with CO ₂ (g)	1	 increases and reason required for mark ASSUME gas is CO₂ unless otherwise stated BUT DO NOT ALLOW an incorrect gas (e.g. H₂) ALLOW more gas Examiner's Comments Candidates were expected to predict an increase in entropy from formation of a gas (CO²). This was communicated either in text or as an equation with state symbols and both approaches were credited.
			entropy decreases AND 3 mol O_2 form 2 mol O_3 OR $3O_2 \rightarrow 2O_3$ OR 3 mol gas form 2 mol gas \checkmark	1	decreases and reason required for mark For mol, ALLOW molecules ALLOW multiples, e.g. $1\frac{1}{2}O_2 \rightarrow O_3$; $O_2 + \frac{1}{2}O_2 \rightarrow O_3$ ALLOW $O_2 + O \rightarrow O_3$ Note: DO NOT ALLOW 2 mol gas forms 1 mol gas unless linked to $O_2 + O \rightarrow O_3$ IGNORE reaction forms fewer moles / molecules

г

		Examiner's Comments
		This part caused more problems as candidate were expected to recognise the different gaseous moles on formation of ozone. Candidates were expected to state the 3:2 rat from $3O_2(g) \rightarrow 2O_3(g)$ or 2:1 ratio from $O_2 + O_2 \rightarrow O_3(g)$; the best responses did this, either by quoting the molar ratio or from use of the equation. Vaguer responses such as 'efewer moles' were not credited. Strangely, some candidates gave a 'correct' response for the reverse reaction.
		FULL ANNOTATIONS MUST BE USED
Ь	CARE: responses involve changes of negative values Feasibility AND ΔG Reaction becomes / is less feasible / not feasible AND ΔG increases OR ΔG becomes / is less negative / more positive OR ΔG > 0 OR ΔH – $T\Delta S$ > 0 OR ΔH – $T\Delta S$ becomes / is less negative / more positive positive OR ΔH > $T\Delta S$ \checkmark OR $T\Delta S$ becomes / is more negative than $\Delta H \checkmark$	As alternative for 'less feasible' ALLOW 'less spontaneous' OR a comment that implies 'reaction no longe take place' ALLOW for ΔG increases $\Delta G < 0$ only at low T DO NOT ALLOW $T\Delta S > \Delta H$ (comparison wrong way round) NOTE: Last statement automatically scores 2nd mark ALSO IGNORE significance IGNORE magnitude for 1st marking point 2 DO NOT ALLOW $T\Delta S$ increases IGNORE significance
	Effect on $T\Delta S$ $T\Delta S$ becomes more negative OR $T\Delta S$ decreases OR $-T\Delta S$ becomes more positive OR $-T\Delta S$ increases OR magnitude of $T\Delta S$ increases OR $T\Delta S$ increases \checkmark	APPROACH BASED ON TOTAL ENTROPY:Feasibility with increasing temperatureReaction becomes less feasible / not feasibleAND $\Delta S - \Delta H / T$ OR ΔS_{total} decreases / lesspositive \checkmark Effect on $\Delta H / T$ $\Delta H / T$ is less negative OR $\Delta H / T$ increasesOR $-\Delta H / T$ decreasesOR magnitude of $\Delta H / T$ decreases \checkmark Examiner's Comments
		Comparison of negative numbers is a difficult skill, shown by the many contradictions seen i

				the candidate responses. The key to success here was to compare the two key terms, ΔH and $T\Delta S$ and to relate these to feasibility from the sign of ΔG . Problems arose in responses that ignored the negative signs leading to ambiguous statements. The required ' $T\Delta S$ becomes more negative' was often communicated as ' $T\Delta S$ increases'. The latter term is ambiguous, its meaning depending on whether the sign is included or omitted. The comparison of $T\Delta S$ with ΔH caused more problems with many responses seen of $T\Delta S >$ ΔH . Mathematically, the opposite is true as both values are negative. The better approach was to communicate this relationship in text as ' $T\Delta S$ is more negative that ΔH .' The responses from the best candidates used this precise language but many candidates did not score marks here because of the ambiguity.
c	i	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 75.962 OR 75.96 OR 76.0 OR 76, award 2 marks $\Delta S = (33 + 3 \times 189) - (76 + 3 \times 131)$ = (+)131 (J K ⁻¹ mol ⁻¹) \checkmark $\Delta G = 115 - (298 \times 0.131)$ = (+) 75.962 OR 75.96 OR 76.0 OR 76 (kJ K ⁻¹ mol ⁻¹) \checkmark	2	DO NOT ALLOW –131 ALLOW ECF from incorrect calculated value of ΔS Examiner's Comments Almost all candidates successfully showed that the entropy change was 131 J K ⁻¹ mol ⁻¹ . The majority then went on to use the Gibbs equation to obtain the correct value of ΔG . It was only the weaker candidates who succumbed to use of 131, rather than 0.131 in the expression, resulting in a negative absolute temperature. Some candidates used 25 °C instead of 298 K. Candidates are advised to check that correct provided values had been used: a common transcription error was use of –155 instead of –115 for the ΔH value. Answer: 76.0 kJ K ⁻¹ mol ⁻¹
	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 878 OR 877.9 OR 877.86, award 2 marks	2	ALLOW total entropy statement: $\Delta S(\text{total}) = 0 \text{ OR } \Delta S(\text{total}) > 0$

	(Minimum temperature when) $\Delta G = 0$ OR $\Delta H - T\Delta S = 0$ OR (For feasibility) $\Delta G = 0$ OR $\Delta G < 0$ OR $\Delta H - T\Delta S < 0$		
	$T = \frac{115}{0.131} = 878 \text{ K}$		ALLOW ECF from incorrect calculated value of Δ <i>S</i> from 2(c)(i)
			ALLOW 878 up to calculator value of 877.862595 correctly rounded
			Examiner's Comments
			This part was answered correctly by almost all candidates, using the provided ΔH value and the candidate's calculated ΔS value from (c)(i). Some candidates unexpectedly converted their correct K value into °C. The only significant error seen here was with incorrect rounding.
			Answer: 878 K
	Total	9	
	∆H calculation from experiment		
	<i>q</i> = 100 × 4.18 × 20.5 OR 8569 J OR 8.569 kJ (1)		
	Amount of butan-1-ol = $\frac{0.259}{74}$ = 3.5 × 10 ⁻³ mol (1)		
	$\Delta H = -2448 \text{ kJ mol}^{-1} (1)$		
	ΔS calculation		allow calculator value for $\Delta H = -2448.285714$
	$\Delta S = S_{\text{products}} - S_{\text{reactants}}$		figures
9	$\Delta S = (4 \times 214) + (5 \times 70) - [(228) + (6 \times 205)]$	7	
	$\Delta S = 1206 - 1458 (1)$		
	$\Delta S = -252 \text{ J K}^{-1} \text{ mol}^{-1} \text{ OR} - 0.252 \text{ kJ K}^{-1} \text{ mol}^{-1} (1)$		mark for use of correct expression with ΔS in kJ
	∆G calculation		K ^{−1} mol ^{−1}
	$\Delta G = \Delta H - T \Delta S$		allow three or more sig figs for ΔG
	$\Delta G = -2448 - (298 \times -0.252) (1)$		
	$\Delta G = -2373 \text{ (kJ mol}^{-1} \text{) (1)}$		
	Total	7	